Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202406750, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651747

RESUMEN

Electrocatalytic reduction of nitrate to ammonia provides a green alternate to the Haber-Bosch method, yet it suffers from sluggish kinetics and a low yield rate. The nitrate reduction follows a tandem reaction of nitrate reduction to nitrite and subsequent nitrite hydrogenation to generate ammonia, and the ammonia Faraday efficiency (FE) is limited by the competitive hydrogen evolution reaction. Herein, we design a heterostructure catalyst to remedy the above issues, which consists of Ni nanosphere core and Ni(OH)2 nanosheet shell (Ni/Ni(OH)2). In-situ Raman spectroscopy reveals Ni and Ni(OH)2 are interconvertible according to the applied potential, facilitating the cascade nitrate reduction synergistically. Consequently, it attains superior electrocatalytic nitrate reduction performance with an ammonia FE of 98.50% and a current density of 0.934 A cm-2 at -0.476 V versus reversible hydrogen electrode, and exhibits an average ammonia yield rate of 84.74 mg h-1 cm-2 during the 102-hour stability test, which is highly superior to the reported catalysts tested under similar conditions. Density functional theory calculations corroborate the synergistic effect of Ni and Ni(OH)2 in the tandem reaction of nitrate reduction. Moreover, the Ni/Ni(OH)2 catalyst also possesses good capability for methanol oxidation and thus is used to establish a system coupling with nitrate reduction.

2.
Phys Chem Chem Phys ; 25(44): 30296-30307, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37930335

RESUMEN

The shortage of freshwater is a critical concern for contemporary society, and reverse osmosis desalination technology has gathered considerable attention as a potential solution to this problem. It has been recognized that the desalination process involving water flow through angstrom-sized pores has tremendous potential. However, it is challenging to obtain angstrom-sized pore structures with internal mass transfer and surface/interface properties matching the application conditions. Herein, a two-dimensional (2D) zeolite-like carbon structure (Carzeo-ANG) was constructed with unique angstrom-sized pores in the zeolite structure; then, the surface/interfacial transport behavior and percolation effect of the Carzeo-ANG desalination membrane were evaluated by density functional theory (DFT) calculations and classical molecular dynamics. The first-principles calculations in density functional theory were implemented through the Vienna ab initio simulation package (VASP), which is a commercial package for the simulation of carbon-based materials. The results show that Carzeo-ANG is periodically distributed with angstrom-sized pores (effective diameter = 5.4 Å) of dodecacyclic carbon rings, which ensure structural stability while maintaining sufficient mechanical strength. The remarkable salt-ion adsorption properties and mass transfer activity combined with the reasonable density distribution and free energy barrier for water molecules endow the membrane with superior desalination ability. At the pressure of 80 MPa, the rejection efficiency of Cl- and Na+ were 100% and 96.25%, and the membrane could achieve a water flux of 132.71 L cm-2 day-1 MPa-1. Moreover, the interconnected electronic structure of Carzeo-ANG imparts a self-cleaning effect.

3.
Phys Chem Chem Phys ; 25(25): 16908-16920, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37325848

RESUMEN

Freshwater is a scarce and vulnerable resource that has never encountered such an extensive focus on a nearly worldwide scale as it does today. Recently, it has been found that desalination powered by two-dimensional (2D) carbon materials as separation membranes has significantly reduced the operational costs and complexity but presents heavy requirements for the structural stability and separation properties of the membrane materials. Here, we combined carbon materials with promising adsorption properties and zeolites characterized by a regular pore structure to obtain a zeolite-like structured carbon membrane Zeo-C and investigated the suitability of the Zeo-C membrane for seawater desalination based on the computational-simulation-driven approach. The results of molecular dynamics (MD) simulations and density functional theory (DFT) calculations revealed that the periodic pore distribution conferred favorable structural stability and mechanical strength to the Zeo-C desalination membrane. The rejection rate of Na+ and Cl- is ensured at 100% under a pressure of 40-70 MPa, and that of Na+ could reach 97.85% even though the pressure increases to 80 MPa, exhibiting superior desalination properties. The porous nature of the zeolite-like structure and the low free energy potential barrier are conducive for reliable adsorption and homogeneous diffusion of salt ions, which facilitates the acquisition of desirable water molecule permeability and salt ion selectivity. In particular, the interlinked delocalized π-network imparts inherent metallicity to Zeo-C for self-cleaning in response to electrical stimulation, thereby extending the lifetime of the desalination membrane. These studies have greatly encouraged theoretical innovations and serve as a guiding reference for desalination materials.

5.
ACS Appl Mater Interfaces ; 14(13): 15549-15557, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35317554

RESUMEN

Benefiting from the abundant solar energy and the emergence of photothermal conversion equipment, solar-driven water evaporation has shown great potential in seawater desalination. One common problem for solar-thermal evaporation is that the salt crystallized on the surface of solar absorbers during the seawater evaporation process will significantly deteriorate the continuity and efficiency of the evaporation process. In most reports, efforts have been made to transfer the accumulated salts, while the studies on preventing salt crystallization, which leads to better continuity of the production, are limited. Herein, a spontaneous salt-preventing solar-thermal water evaporator was designed, utilizing a dual-mode water transfer structure consisting of in-plane diffusion and in-tube migration. The dual-mode structural system gave rise to uniform and continuous water transfer, efficiently suppressing the salt concentration in the evaporator. As a result, salt crystallization was scarcely found on the surface of the evaporator under 1 sun irradiation for an ultralong time (200 h), demonstrating its high efficiency in inhibiting salt crystallization. In addition, the small contact area between the water and the evaporator could reduce the heat loss during the solar-thermal evaporation process, which further improved the water evaporation rate (1.64 kg m-2 h-1).

6.
Nanotechnology ; 32(49)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34433147

RESUMEN

Carbon nanotube (CNT) films have demonstrated great potential for highly efficient thermal management materials. However, how to enable a combined feature of excellent thermal conductivity and structural robustness, which is crucial for the high-performance realization, still remains challenging. Herein, an effective and facile strategy to solve the problem was proposed by developing a graphene (G)/CNT film with highly aligned welding of ultrathin G layer to robust CNT film. The unique architectural features of the obtained composite film enabled a high tensile strength (116 MPa) and electric conductivity (1.7 × 103S cm-1). Importantly, the thermal conductivity was significantly improved compared to neat CNT film, and reached as high as 174 W m-1K-1. In addition, the G/CNT film featured a superior electromagnetic shielding performance. This work provides useful guidelines for designing and fabricating the composite CNT film with prominent thermal conductivity, as well as excellent mechanical and electrical properties.

7.
Small ; 17(30): e2101093, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34145751

RESUMEN

Effective and reliable encapsulation of phase change materials (PCMs) is essential and critical to the high-performance solar-thermal energy harvesting and storage. However, challenges remain pertaining to manufacturing scalability, high efficiency in energy storage/release, and anti-leakage of melted PCMs. Herein, inspired by natural legume, a facile and scalable extrusion-based core-sheath 3D printing strategy is demonstrated for directly constructing bean-pod-structured octadecane (OD)/graphene (BOG) phase change microlattices, with regular porous configuration as well as individual and effective encapsulation of OD "beans" into highly interconnected graphene network wrapping layer built by closely stacked and aligned graphene sheets. The unique architectural features enable the ready spreading of light into the interior of phase change microlattice, a high transversal thermal conductivity of 1.67 W m-1 K-1 , and rapid solar-thermal energy harvesting and transfer, thereby delivering a high solar-thermal energy storage efficiency, and a large phase change enthalpy of 190 J g-1 with 99.1% retention after 200 cycles. Most importantly, such encapsulated PCMs feature an exceptional thermal reliability and stability, with no leakage and shape variation even at 1000 thermal cycles and partial damage of BOG. This work validates the feasibility of scalably printing practical encapsulated PCMs, which may revolutionize the fabrication of composite PCMs for solar-thermal energy storage devices.


Asunto(s)
Fabaceae , Calor , Impresión Tridimensional , Reproducibilidad de los Resultados , Conductividad Térmica
8.
Front Neurosci ; 15: 771980, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002602

RESUMEN

Implantable brain electrophysiology electrodes are valuable tools in both fundamental and applied neuroscience due to their ability to record neural activity with high spatiotemporal resolution from shallow and deep brain regions. Their use has been hindered, however, by the challenges in achieving chronically stable operations. Furthermore, implantable depth neural electrodes can only carry out limited data sampling within predefined anatomical regions, making it challenging to perform large-area brain mapping. Minimizing inflammatory responses and associated gliosis formation, and improving the durability and stability of the electrode insulation layers are critical to achieve long-term stable neural recording and stimulation. Combining electrophysiological measurements with simultaneous whole-brain imaging techniques, such as magnetic resonance imaging (MRI), provides a useful solution to alleviate the challenge in scalability of implantable depth electrodes. In recent years, various carbon-based materials have been used to fabricate flexible neural depth electrodes with reduced inflammatory responses and MRI-compatible electrodes, which allows structural and functional MRI mapping of the whole brain without obstructing any brain regions around the electrodes. Here, we conducted a systematic comparative evaluation on the electrochemical properties, mechanical properties, and MRI compatibility of different kinds of carbon-based fiber materials, including carbon nanotube fibers, graphene fibers, and carbon fibers. We also developed a strategy to improve the stability of the electrode insulation without sacrificing the flexibility of the implantable depth electrodes by sandwiching an inorganic barrier layer inside the polymer insulation film. These studies provide us with important insights into choosing the most suitable materials for next-generation implantable depth electrodes with unique capabilities for applications in both fundamental and translational neuroscience research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...